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Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, 
research, education and electricity production. This generates radioactive waste. In the 
Netherlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie 
Voor Radioactief Afval). After interim storage for a period of at least 100 years radioactive 
waste is intended for disposal. There is a world-wide scientific and technical consensus 
that geological disposal represents the safest long-term option for radioactive waste.  
Geological disposal is emplacement of radioactive waste in deep underground formations. 
The goal of geological disposal is long-term isolation of radioactive waste from our living 
environment in order to avoid exposure of future generations to ionising radiation from the 
waste. OPERA (OnderzoeksProgramma Eindberging Radioactief Afval) is the Dutch research 
programme on geological disposal of radioactive waste. 
  
Within OPERA, researchers of different organisations in different areas of expertise will 
cooperate on the initial, conditional Safety Cases for the host rocks Boom Clay and Zech-
stein rock salt. As the radioactive waste disposal process in the Netherlands is at an early, 
conceptual phase and the previous research programme has ended more than a decade ago, 
in OPERA a first preliminary or initial safety case will be developed to structure the re-
search necessary for the eventual development of a repository in the Netherlands. The 
safety case is conditional since only the long-term safety of a generic repository will be 
assessed. OPERA is financed by the Dutch Ministry of Economic Affairs, Agriculture and In-
novation and the public limited liability company Electriciteits-Produktiemaatschappij 
Zuid-Nederland (EPZ) and coordinated by COVRA. Further details on OPERA and its out-
comes can be accessed at www.covra.nl.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report concerns a study conducted in the framework of OPERA. The conclusions and 
viewpoints presented in the report are those of the author(s). COVRA may draw modified 
conclusions, based on additional literature sources and expert opinions. A .pdf version of 
this document can be downloaded from www.covra.nl 
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Summary 
 
This report gives a general description of the methods for uncertainty analyses that can be 
used in the safety assessment performed in OPERA.  
 

Samenvatting 
 
Dit rapport geeft een algemeen overzicht van de methodes voor onzekerheidsanalyse die 
toegepast kunnen worden in de veiligheidsstudie die verricht wordt in het OPERA onder-
zoeksprogramma. 
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1. Introduction 

1.1. Background 

The five-year research programme for the geological disposal of radioactive waste – 
OPERA- started on 7 July 2011 with an open invitation for research proposals. In these pro-
posals, research was proposed for the tasks described in the OPERA Research Plan [VER 11]. 
This report is a result of one of the research projects in OPERA, OPAP-I, started in June 
2012, carried out by a consortium of NRG, SCK.CEN, GRS and TNO. 
 

1.2. Objectives 

This report is the first result of the research Task 7.3.2 Methods for uncertainty analysis. 
The work elaborates on useful and feasible state-of-the-art techniques for uncertainty 
analysis. Proper methods have been worked out and documented in a way that they can be 
integrated in the OPERA modelling environment developed in Task 7.2.4 Integrated model 
for safety assessment.  Guidelines for Task 7.2.5 Parameterization of PA models have been 
proposed to identify combinations of extreme parameter values that may influence the 
overall PA outcome (sensitivity analysis). Also, some attention has been given to the pro-
cess on how to organize, perform, integrate and communicate uncertainty calculations and 
their outcomes. 
 

1.3. Realisation 

The study presented in this report is performed by GRS with support from NRG. The study 
is based on the experience in previous projects, in particular VSG, PAMINA, EVEREST and 
OPLA-1A. 
 

1.4. Explanation contents 

Chapter 2 gives a general discussion of uncertainties in the safety Case. Chapter 3 de-
scribes the concepts for dealing with uncertainties. Chapter 4 gives the mathematical con-
cepts for probabilistic uncertainty and sensitivty analysis. Chapter 5 gives a brief discussion 
of the methodology from the viewpoint of the overall safety assessment. Chapter 6 
concludes the report by listing the steps that are taken in the uncertainty analysis foreseen 
in OPERA. 
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2. Uncertainties in the Safety Case  
 
The goal of a safety case for a final repository project is to prove that the facility will be 
safe in every respect. This comprises considerations about the near and far future. It is a 
principal fact, however, that statements about the future can never be more than likeli-
hood statements. Although, by this reason, a strong proof of safety is principally impossible, 
the remaining uncertainty can be assessed and should be kept as small as possible. This has 
to be done by carefully identifying and quantifying the primary uncertainties that can have 
an influence on the overall uncertainty of the safety statement and properly assessing this 
influence. 
 
An overview of the treatment of uncertainties in the disposal programmes of several Euro-
pean countries has been compiled within the PAMINA project [PAM 08, PAM 11]. 
 
The OPERA safety case is based on the IAEA guide [IAEA 12], which requires that the safety 
case provide, among other things, identification of uncertainties in the behaviour and per-
formance of the disposal system, analysis of the significance of the uncertainties, and 
identification of approaches for the management of significant uncertainties. 
 
This chapter gives an introduction to the problem and explanations of the relevant terms. 
 

2.1. Aleatory and epistemic uncertainties 

Generally, uncertainties in describing the physical reality of some system can be classified 
in two categories: 

- Uncertainties that are due to the physics of the system under consideration are 
called aleatory.  

- Uncertainties that are due to the lack of knowledge about the system under consid-
eration are called epistemic. 

 
Aleatory uncertainties are an intrinsic property of the physical system. They result from 
effects that cause a principally unpredictable behaviour. Although such effects are ubiqui-
tous in physics on a microscopic level, they are usually of limited importance for the mac-
roscopic description. While, for example, one is unable to predict the exact travel path 
and time of a specific particle in a porous medium, the macroscopic transport can be well 
described using integrative measures like concentration, advection, diffusion and disper-
sion. Nevertheless, aleatory uncertainties occur also on the macroscopic level, either be-
cause it is practically impossible to collect sufficiently detailed information about the sys-
tem to allow a less uncertain prediction of its behaviour, or because insufficiently predict-
able future events like ice ages might have a strong influence to some important element 
of the system. Aleatory uncertainties cannot be reduced, and in uncertainty management 
the main task about them is to identify and quantify them properly and to assess their in-
fluence. 
 
Epistemic uncertainties, on the other hand, have nothing to do with the physics of the sys-
tem but with our incomplete knowledge about it. Possibly, not all relevant effects are 
completely understood and described properly by the applied models. Even if the system 
and the influencing effects are well understood, however, there are usually some parame-
ters we do not know much about, because they have not (yet) been or cannot be measured 
with sufficient accuracy. In practice, uncertainties of the epistemic type are usually more 
relevant than the aleatory ones. They can be reduced by focusing research efforts to dedi-
cated investigations, which is why a reliable sensitivity analysis is important for them. 
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While in principle, aleatory and epistemic uncertainties are two different things, the dis-
tinction between them is often not unique in practice. The hydraulic conductivity of the 
relevant radionuclide travel path, for example, will depend on the path itself, which may 
be subject to aleatory uncertainty, as well as on poorly known hydraulic properties of the 
geological layers. The uncertainty of container lifetime can be regarded as aleatory, but it 
can be reduced by focusing research to improving the containers, which requires this un-
certainty to be handled as epistemic. In fact, many, if not most uncertainties have some 
characteristics of both types. Since purely aleatory uncertainties are rare in a safety case 
and epistemic uncertainties generally require a more sophisticated handling, it is a possi-
ble approach to simply handle all uncertainties as if they were epistemic. 
 

2.2.  Sources of uncertainties 

Generally, three main sources of uncertainties in the safety case are distinguished: 
- scenario uncertainties, 
- model uncertainties, 
- parameter uncertainties. 

 

2.2.1. Scenario uncertainties 

To assess the safety of a deep underground repository (DGR) using a contaminant transport 
model, it is necessary to define the principle system development, the scenario, before 
modelling the details. Scenario analysis is an important task within the safety case. It is 
done by identifying and assessing the relevant features, events and processes (FEPs) and 
combining them to a number of scenarios that are considered more or less likely to occur. 
This procedure is subject to a variety of uncertainties, concerning, for example, the rele-
vance of features or processes or the probability and consequences of future events, and 
resulting from the uncertainty of information about the different components of scenario 
development: 

- initial conditions, 
- internal FEPs and couplings between them, 
- external FEPs, 
- time scales. 

 
Consequently, there will be considerable uncertainty about the relevance of the derived 
scenarios. A characteristic property of such scenario uncertainties is that in most cases 
they are hard to quantify.  
 

2.2.2. Model uncertainties 

As the assessment of the effects of a DGR to the environment in the far future can only be 
done by numerical calculations, it is necessary to describe the relevant processes defined 
in the identified scenarios using adequate mathematical and numerical models. Reliable 
models for simple physical effects like diffusion or advection are available, but in reality, 
many effects occur together and influence each other, requiring complex coupled models. 
In the development of such models, different sources of uncertainty occur: 

- poor or incomplete knowledge or understanding of physical processes, 
- incomplete understanding of interactions and mutual influences, 
- simplified representation of the system, 
- simplified mathematical representation of individual processes and their interac-

tions 
- errors in the numerical codes, 
- human errors in executing the calculations. 
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It is therefore always questionable to what extent a model describes the real conditions 
correctly. A proper validation of models is often practically or actually impossible. There-
fore, the applied models are an important source of uncertainty in the safety case, which 
people tend to ignore once they have gained some trust in their models by calculating re-
sults that look plausible enough. It should always be kept in mind that numerical results 
are not by themselves true descriptions of the nature. 
 

2.2.3. Parameter uncertainties 

The numerical models used for calculating future impacts to the environment have to be 
supplied with input data. Even if the model itself is adequate for providing valid safety 
statements about the system, this requires proper selection of the values of all model pa-
rameters, most of which are, by various reasons, more or less uncertain. Each model pa-
rameter corresponds with some physical property of the real system, but this is, in general, 
not a simple 1:1 relationship. As well as it is possible that several system properties are 
represented in the model by one common parameter, different parameters are sometimes 
influenced by the same system property. Therefore, the uncertainties of the parameters 
can be coupled in a complex manner. Generally, the quantification of parameter uncer-
tainties and their dependencies is a challenging task. Parameter uncertainties are not nec-
essarily the most important source of uncertainties in the safety case, but once quantified, 
they can be handled using well-established mathematical procedures. 
 
Figure 2-1 gives a schematic impression of the sources of uncertainties on different levels 
and their contribution to overall uncertainty. Predicting the real development correctly 
means finding the right way through the tree to the one red balloon that represents the 
reality best. 
 

2.3. Identification and quantification of uncertainties 

To be handled properly, all potentially relevant uncertainties in the safety case have to be 
identified and quantified in an adequate manner. A reliable statement about the overall 
uncertainty of the safety assessment can only be given if all relevant uncertainties of sce-
narios, models or parameters are taken into account and quantified in such a way that 
they actually represent our lack of knowledge about the reality. Realistic quantification of 
uncertainties is a task of its own in a safety case, and not at all an easy one. If uncertain-
ties are underestimated, the resulting safety statement might appear more reliable than it 
really is. Strong overestimation of uncertainties, however, can lead to very uncertain and 
therefore nearly meaningless results. 
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Figure 2-1  Levels of uncertainty 
 

2.3.1. Scenario uncertainties 

Scenario uncertainties result from the uncertainties of the various FEPs the scenarios are 
composed of. These uncertainties themselves can be of the aleatory or the epistemic type 
and are often hard to quantify objectively. Moreover, even if the uncertainty of a FEP is 
known, it can be unclear how it affects the probability of the scenario to occur. The as-
sessment of scenario probabilities by expert judgement, taking into account the probabili-
ties of the relevant FEPs, is the core task of scenario analysis. More than a rough categori-
sation, however, is hardly possible.  
 

2.3.2. Model uncertainties 

Proper quantification of model uncertainties is even harder, if not practically impossible. 
We use the models we regard as valid, normally without being able to specify a probability 
that they are really valid for all computational situations under consideration. The trust in 
a model may increase if it is properly validated under various conditions, but especially for 
the typical complex coupled models applied in performance assessment a real validation is 
at least expensive and time-consuming, if not practically impossible. Moreover, even if a 
model can be validated under certain conditions, this does not provide a quantitative 
measure for the model uncertainty.  
 
If different physical situations can occur that are described by different model options, a 
quantification of their probabilities by expert judgement can be possible. Such model un-
certainties can be mapped to and treated as parameter uncertainties 
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2.3.3. Parameter uncertainties 

Compared with scenario and model uncertainties, the quantification of parameter uncer-
tainties looks like a straightforward task on the first sight, but it is nevertheless demanding. 
Since each parameter is measured on a one-dimensional scale, its uncertainty can be de-
scribed by a probability density function (pdf). The integral of the pdf over an interval of 
the parameter axis gives the probability that the actual parameter value lies within this 
interval. There are a number of types of pdfs, like uniform, normal or exponential distribu-
tions, which require different statistical parameters for specification. So the quantification 
of the uncertainty of a physical parameter means finding the right distribution type as well 
as the correct statistical parameters. If there is enough experience about the parameter in 
question, maybe from measurements under different conditions, it should be relatively 
simple to find the adequate pdf. In many cases, however, there is very little knowledge 
about the values the parameter can take on. This means that the uncertainty of the pa-
rameter is rather high, but a concrete pdf is hard to specify. The pdfs used should always 
be substantiated and consistent with the actual knowledge about the parameters (see 
chapter 3.5). 
 

2.4.  Uncertainties in the context of Performance Assessment 

Performance Assessment (PA) is that part of the safety case that deals with assessment of 
the long-term safety of the DGR system by numerical model calculations. Long-term here 
means a principally unlimited time frame, because safety cannot be confined to a limited 
future. Nevertheless, there is a common consensus that an assessment period of 1 million 
years is normally sufficient, since the radiological hazard potential of the typical inventory 
of a repository for high-level waste (HLW) will decay to a level that is comparable to or 
below natural values within this time. 
 
It is obvious that a prediction over 1 million years will be subject to an uncertainty that 
can hardly be assessed. Therefore, the claim of Performance Assessment is not to predict 
the future development of the system correctly, but to provide a statement about its safe-
ty. If, for example, the uncertainty of a parameter affects some details of the system be-
haviour without influencing the safety of the system as a whole, this uncertainty is irrele-
vant for the safety statement. The applied models do not have to be realistic descriptions 
of the future development of the system, but should make sure, as far as possible, that 
they do not underestimate detrimental effects to man and environment. The uncertainty 
of the model calculation results should therefore not be misinterpreted as the uncertainty 
of the safety assessment.  
 
Nevertheless, as a precondition for estimating the uncertainty of the safety statement re-
liably, it is necessary to investigate the effects of all uncertainties to the model output 
thoroughly. This is done in three phases: 

- identification and quantification of all uncertainties that might have a significant 
influence to the model results, 

- uncertainty analysis: assessment of the overall uncertainty of the model results, 
- sensitivity analysis: identification of those uncertainties that are actually most rel-

evant for the model output uncertainty. 
 
For all of these tasks, different approaches, concepts and methods are available, which 
are described in the following chapters. 
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3. Concepts for dealing with uncertainties 
 
Figure 3-1 is taken from [IAEA 12] and shows the components of a safety case and their 
interactions. Component F, management of uncertainty, is an essential part, which affects 
all other major components. For explanation of this component, the mentioned IAEA guide 
refers to the IAEA General Safety Requirements, part 4 [IAEA 09], which says: 
 
Uncertainty and sensitivity analysis shall be performed and taken into account in the re-
sults of the safety analysis and the conclusions drawn from it. 
 
4.58. […].There will always be uncertainties […] that will depend on the nature of the 
facility or activity and the complexity of the safety analysis. These uncertainties have to 
be taken into account in the results of the safety analysis and the conclusions drawn from 
it. 
 
4.59. Uncertainties in the safety analysis have to be characterized with respect to their 
source, nature and degree, using quantitative methods, professional judgement or both. 
Uncertainties that may have implications for the outcome of the safety analysis and for 
decisions made on that basis are to be addressed in uncertainty and sensitivity analyses. 
Uncertainty analysis refers mainly to the statistical combination and propagation of un-
certainties in data, whereas sensitivity analysis refers to the sensitivity of results to ma-
jor assumptions about parameters, scenarios or modelling. 
 
As a consequence from these requirements, practicable concepts have to be defined for 
characterizing and handling of all kinds of relevant uncertainties. According to Figure 3-1, 
management of uncertainties is relevant for the following components of the safety case: 

C – System description, 
D – Safety assessment, 
G – Limits, controls and conditions, 
H – Integration of safety arguments. 

 
Since this report is written from the view of Performance Assessment, it does not deal with 
the uncertainties of components G and H, but only with those affecting components C and 
D. However, we do not classify the uncertainties according to the components but distin-
guish between the three kinds of uncertainties introduced in chapter 2, scenario uncer-
tainties, model uncertainties and parameter uncertainties. 
 
In the following, the principal concepts for identifying and handling uncertainties in the 
safety case are introduced and explained. In performance assessment, a combination of all 
of them should be applied.  
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Figure 3-1 Components of the safety case [Source: IAEA SSG-23] 
 

3.1. Scenario analysis  

The site and the repository system will undergo exactly one evolution, which will be gov-
erned both by climatic and geological processes at the site and processes induced by the 
repository construction and the emplacement of the waste. This real evolution cannot be 
predicted in all details. The resulting uncertainty with regard to the future evolution of 
the repository system can be reduced only to a limited extent by additional research and 
site investigations. For example, it can be assumed that several cold times with permafrost 
formation will occur in Northern Europe within the next one million years, which may be 
associated with glaciation of the site. An exact prediction, how many of these cold times 
will occur is not possible.   
 
Therefore, on the basis of a systematic assessment of relevant influencing factors, a lim-
ited number of possible evolutions have to be derived with the objective to identify and 
describe in detail the most relevant scenarios.   
 
A systematic scenario analysis methodology was developed in the project VSG [BEU 12].  It 
aims at deriving one reference scenario and a number of alternative scenarios.  At large, 
the scenarios are supposed to represent the reasonable range of repository system evolu-
tions to cover the scenario uncertainties. The methodology allows the assignment of prob-
ability classes to the scenarios pursuant to the German regulatory framework [BMU 10]. 
This methodology is described in the following as an example for how the uncertainties in 
scenario development can be handled systematically. 
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3.1.1. FEP catalogue 

The individual scenarios are characterised by FEPs that may influence the future evolution 
of the repository system and their associated characteristics. The relevant information is 
given in a site-specific FEP catalogue, providing detailed information for each FEP. The 
catalogue allows selecting directly all FEPs that are relevant for the reference scenario 
and the alternative scenarios. 
 
Each FEP entry in the catalogue comprises general information, a description of the cir-
cumstances at the site and site-specific impacts, a classification of the conditional proba-
bility of occurrence, details on the impairment of the initial barriers’ functionality, and 
information regarding the time frame of action. The direct interdependence with other 
FEPs must be specified and explained, thereby distinguishing between initiating FEPs, re-
sulting FEPs, affecting FEPs and affected FEPs, respectively. If possible, probable and less 
probable characteristics of the FEP are indicated. Sometimes it is only possible to describe 
a characteristic but no probabilities can be attributed to it. This may be due to scarce data 
or information, or to a situation, where only bounding values are of interest with respect 
to the scenario analyses. In those cases representative characteristics are described. 
 

3.1.2. Scenario development 

Scenario outlines for a disposal in clay have already been developed since the earliest 
safety assessments for geological disposal. E.g. in the EC PAGIS study of 1988, normal evo-
lution scenarios and two altered evolution scenarios (climatic changes and faulting) were 
identified for two reference sites; in Boom clay and in Oxford clay. Since then the list of 
scenarios has been growing in the various national and international programmes.  
 
Since the OPERA outline of a disposal concept in clay (OPERA-PG-COV008) is a generic de-
sign it is not possible to identify site specific scenarios, so the use of public available sce-
nario descriptions is expected to be adequate. Nevertheless, a FEP screening process has 
been undertaken in order to identify potential additional alternative scenarios. This 
screening method is typically a ‘top-down’ method for developing scenarios, as descried in 
SSG-23. The method is based on analyses of how the safety functions of the disposal sys-
tem may be affected by possible events and processes. 
 
The screening procedure resulted in the confirmation of the initial set of nine scenarios, 
but also leads to the identification of six so-called "what-if cases": cases that need to be 
analysed in more detail the impact of specific FEPs on the safety functions. The procedure 
and results are further described in OPERA-PU-NRG011. 
 
The following, typical "bottom-up" method has been applied by GRS in the VSG. The sce-
nario development commences at two starting points that ensue directly from the guiding 
principles for deriving the safety concept: 

- A number of initial barriers are identified that constitute a subset of all barriers 
acting in the repository system via diverse modes of operation and, partly, in dif-
ferent time frames. The initial barriers embrace (parts of) the host rock and (a sub-
set of) the technical barrier system. FEPs that could impair the functionality of the 
initial barriers provide the first starting point for scenario development. 

- In addition all possible system evolutions need to be considered which involve a re-
lease of radionuclides from the waste forms. Those FEPs which are related to the 
mobilisation of radionuclides and their transport are the second starting point for 
scenario development. 

 
The reference scenario results from considering all probable FEPs that 

- may impair the functionality of the initial barriers (initial FEP), and  
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- determine the mobilisation of radionuclides from the waste and their subsequent 
transport, both in the gas phase and in the liquid phase.  

 
If appropriate information is available in the FEP catalogue, the probable or representative 
characteristics of these FEPs are taken as a basis. Otherwise, the characteristics result 
from the direct (first level) interaction with other FEPs. In this case, always the probable 
or representative characteristics of the controlling FEPs of the first level are assumed. If 
these FEP themselves are controlled directly by other FEPs (second level), their character-
istics are used. Further levels are only included, if the aspects are not yet covered by FEPs 
in the first or second level. Owing to the method applied, the reference scenario is proba-
ble. The procedure to identify the characteristics of FEPs for the reference scenario is de-
picted in Figure 3-2. 
  

 
Figure 3-2 Approach to deriving characteristics of FEPs describing the reference 
scenario 
 
Specific assumptions concerning the reference scenario are an important element of sce-
nario development. They provide a means to deal in a transparent and traceable way with 
particular uncertainties, some of which may be minimised in the future while others may 
never be reduced at all. In particular, the latter pertains to the future climatic evolution. 
Therefore, a certain climatic evolution with a series of different types of cold times must 
be defined for the reference scenario. Other specific assumptions deal with situations, 
where no proof has been furnished yet with regard to producibility and functionality of 
engineered barriers or other technical components. Alternative specific assumptions con-
stitute a starting point for deriving alternative scenarios.   
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The reference scenario embraces a set of probable evolutions of the repository system that 
is as large as possible. Alternative scenarios are evolutions which differ in exactly one as-
pect from the reference scenario. Alternative scenarios are developed from the following 
starting points: 

- evolutions resulting from alternatives concerning the specific assumptions for the 
reference scenario, 

- evolutions resulting from less probable characteristics of the FEPs that may impair 
the functionality of the initial barriers, 

- evolutions resulting from less probable characteristics of the FEPs describing mobili-
sation and transport of radionuclides, and 

- evolutions resulting from less probable FEPs. 
 
If possible, information is directly taken from the FEP catalogue concerning less probable 
characteristics of FEPs that may impair the functionality of the initial barriers or that de-
scribe mobilisation and transport of radionuclides. Otherwise, the characteristics are di-
rectly controlled by other FEPs in a similar way as shown in Figure 3-2.   
 
It is feasible that similar alternative evolutions result from the different starting points. In 
this case, various evolutions may be abstracted into one representative alternative scenar-
io that covers the characteristics of the various evolutions. 
 

3.2. Conservative approach 

In each phase of developing scenarios, establishing models or collecting data one is con-
fronted with uncertain knowledge about the system and its physical or chemical behaviour. 
Since, however, the final goal is safety of the system and often the direction of influence 
is obvious, one can eliminate or reduce a lot of uncertainties by choosing conservative op-
tions or values. That means that by fixing such a value or option to the unfavourable end 
of its range of uncertainty it is made sure that its detrimental influence that might jeop-
ardise safety will not - or probably not – be underestimated. 
 
Conservative assumptions, instead of realistic ones, are often applied in scenario analysis, 
model development and parameter determination. This is one of the reasons for PA results 
not being predictions of the real system evolution but safety-oriented estimations. It 
should be kept in mind, however, that conservatism has to be applied with care. Over-
conservatism can lead to results that impair the safety statement or even exceed the per-
missible limits and make the whole performance assessment useless. Therefore, even if 
the direction of influence is clear, one should normally avoid selecting extreme values or 
options regardless of their probability, but try to find a reasonable compromise between 
conservatism and probability. The remaining uncertainty can then be handled by applying 
a probabilistic approach. 
 
Many effects in the repository system are coupled in a complex way, which is often hard to 
understand and difficult to model. The uncertainties of a specific model or parameter can 
therefore have various impacts to the PA results and even cause opposing trends, depend-
ing, for example, on the values of other model parameters. In such cases, a conservative 
choice is principally impossible. There is some danger that this is overlooked in practice 
and an alleged conservatism is introduced to the PA model or the parameter set, which 
actually does not exist. This can distort the results. Before deciding to use a conservative 
model or value one should thoroughly analyse the situation, taking into account all possible 
factors that might have an influence. Conservative assumptions should only be applied 
where it is sufficiently clear that they shift the PA results to the unfavourable side under 
all possible circumstances.  
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Conservative assumptions are integrated in the model that is foreseen for further investi-
gation and become a part of this system. By finally establishing the model and its parame-
terisation for each relevant scenario, a number of standard or reference calculation cases 
are defined. These do neither necessarily represent the most probable evolution of the 
system nor the worst case, but should be designed to allow safety-oriented statements of 
the kind that it is improbable that the detrimental impacts to the environment will be 
higher than calculated. Such statements are still subject to uncertainties, which have to 
be specified and addressed by adequate investigations, keeping in mind that these will 
yield statements about the uncertainty of the conservative system, not about the uncer-
tainty of the reality. 
 

3.3. Deterministic investigation 

Both model and parameter uncertainties can be addressed by conducting deterministic 
investigations in performance assessment. This means that several distinct variations of 
the standard calculation cases are considered, which should cover, as far as possible, the 
range of uncertainty.  
 
Deterministic investigations are a good means for studying the system behaviour under the 
influence of uncertain models or parameters in detail, but do not provide a quantitative 
estimation of the effects of uncertainties. Parameter intervals can be explored by using 
the extreme values, or different model options can be investigated, regardless of their 
actual probabilities. The benefit of such studies is twofold: 

- They provide a deeper insight to the behaviour of the model. This can improve the 
general understanding of the processes and their interactions, but also reveal mod-
elling errors by showing implausible results. 

- They give an impression of the model output under extreme conditions, which are 
normally considered improbable or even not expected to occur at all. Investigations 
with parameters or options that lie outside the expected bandwidth are called 
what-if-studies. Such studies can be useful for showing that the system will not vio-
late the safety requirements even under assumptions that are unreasonably pessi-
mistic. 

 
A deterministic investigation typically addresses only one parameter or model option, 
based on one of the standard calculation cases. Varying several parameters or options at a 
time could lead to blurred results and impair the gain of insight. The effects of different 
parameters and options to the calculation results, however, are not independent of each 
other. Simply setting all parameters and options to that value that appears most unfavour-
able in a deterministic investigation will normally not lead to the global “worst case”. This 
can only be achieved by varying all parameters together. 
 

3.4. Probabilistic analysis 

While deterministic investigations are worthwhile for improving the understanding of the 
qualitative behaviour of the model, for a quantitative assessment of the uncertainty of the 
model output and its sensitivity against parameter variations, taking into account the pa-
rameter distributions and option probabilities, a probabilistic approach is necessary. The 
general idea of probabilistic uncertainty and sensitivity analysis is to execute a high num-
ber of model runs with sets of parameter values that are distributed over the parameter 
space according to their actual distributions.  
 
A probabilistic approach can only handle quantifiable parameters and is therefore most 
adequate for parameter uncertainties. Model uncertainties can be taken into account by 
mapping them to artificial parameters that switch between different model options ac-
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cording to their values. In principle, also scenario uncertainties could be handled this way, 
but this could lead to hardly understandable results, and so they are normally kept out of 
the probabilistic analysis. That means that each relevant scenario has to be investigated 
separately, including a probabilistic analysis, if considered necessary.  
 
A probabilistic investigation requires the availability of reliable probability density func-
tions (pdf) for all parameters. For achieving results that reflect the actual uncertainty of 
the model calculations the pdfs should be consistent with the knowledge about the param-
eters. A proper quantification of uncertainties therefore requires evaluation of available 
sources and an objective scheme for transforming knowledge into a mathematical function, 
the pdf.  
 
Once the pdfs for all uncertain parameters are established, they can be used for drawing a 
sample of parameter sets, which can be used as a basis for the probabilistic investigations. 
For each parameter set a model run is performed. The results of all model runs are then 
evaluated using specific methods. 
 
There are two principally different tasks of probabilistic analysis. While uncertainty analy-
sis means assessing the overall uncertainty of the model output under the influence of the 
uncertainties of all considered parameters, sensitivity analysis is the investigation of how 
the different input uncertainties affect the uncertainty of the model output. Sensitivity 
analysis is the mathematically more demanding task, but it is an important part of the 
safety case. A reliable sensitivity analysis provides good insight to the mathematical be-
haviour of the model, can trigger research activities by focusing them to the most influen-
tial parameters, and can identify model errors by detecting implausible sensitivities. 
 
Probabilistic analysis is generally considered the most powerful tool for assessing uncer-
tainty and sensitivity of the model and should be executed with care. 
 

3.5. Determination of pdfs 

A proper quantification of uncertainties in the form of probability density functions (pdfs) 
is an essential part of the uncertainty management and a pre-requisite for probabilistic 
uncertainty and sensitivity analysis. It should be avoided simply to use standard pdf types 
like normal or uniform distribution with more or less arbitrarily chosen distribution param-
eters without thinking about the actual knowledge about the parameter in question. A re-
view of methods for assigning pdfs by expert judgement has been made in PAMINA 
[PAM 09a]. For practical purposes, a simple systematic procedure for pdf development has 
also been proposed [PAM 08b]. The following is a very short summary of this procedure. 
 
Firstly, available sources of information about the parameter have to be identified and 
assessed according to their quality. For levels of quality have been defined:  

- direct measurements  (3), 
- model representation  (2), 
- analogy consideration  (1), 
- plausibility    (0). 

 
If several independent sets of information are available, they should be merged under as-
sessment of their reliability. Data sets that seem unreliable should be excluded from the 
investigation. Lower-quality data should be used to confirm and substantiate higher-quality 
data. It is recommended to merge data from the two highest available quality levels. By 
adding their levels one gets a number between 0 and 5. The further procedure depends on 
this number. 
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Case 0: Only a plausibility interval is known. No parts of the interval should be weighted 
higher than others, and consequently, the PDF must be a uniform distribution between the 
interval bounds. 
 
Case 1: Some analogies are available, supported by plausibility limits. In this case the pdf 
has to be transferred from the analogy data or model. The resulting pdf has then to be re-
calibrated to make sure that the plausibility limits are not exceeded. 
 
Case 2: A model representation for the parameter under consideration exists. A model will 
always allow the derivation of a pdf. For calibration of the pdf only the plausibility limits 
can be used. 
 
Case 3: A model representation for the parameter under consideration exists. The pdf has 
to be derived from the model. Its calibration can be based on analogies instead of simple 
plausibility. One can try to transfer the model so that it describes, as well as possible, the 
analogous situation and then re-transfer the pdf to the actual situation.  
 
Case 4: Though it seems to be a comfortable situation to be in possession of directly meas-
ured data supported by analogues, this case can become problematic and include consider-
able subjectivity. The pdf has to be derived from the measured data, which can be impos-
sible if only a few values or even a single one are available. First, it has to be decided 
whether the amount of data is sufficient to derive a pdf, which then can be compared with 
the analogue. If there is no strong discrepancy, the pdf is confirmed, otherwise uncertainty 
might be higher than the data suggest and the pdf needs to be recalibrated. If, however, 
the directly measured data do not suffice to derive a pdf one should try to use the ana-
logue for derivation of a pdf, transfer it to the actual parameter and  calibrate it with the 
measured data. If even that is not possible, one should take a uniform distribution in an 
adequate interval. If no detailed background is available to perform a qualified expert 
judgement, one will have to derive a sufficiently large interval from the analogue. A trian-
gular distribution is probably the best choice in this case. 
 
Case 5: Measured data are supported by a model representation. In this case the pdf can 
be derived from the model and calibrated with the measured data. If the model and the 
measurements obviously do not fit together and it cannot be decided by expert judgment 
which is more reliable, one should generally prefer the measured data. Disregarding the 
less reliable source of information leads to a lower case, and the PDF determination should 
be performed accordingly. 
 
In some of the cases the pdf has to be determined from data points. If there are plenty of 
points, the pdf can be read off directly. If the number of data points is low (4 or less), 
there is very little information and it is recommended to identify a plausibility interval and 
to use either a uniform distribution or a triangular distribution with its peak at the mean of 
the given data. The situation that requires the most sophisticated procedure results from a 
medium number of data points. In this case, only (log-)uniform or (log-)normal distribu-
tions should be considered, as there is too little information to choose a more sophisticat-
ed distribution type, and too much for relying on plausibility assumptions, which could jus-
tify a triangular distribution. It should first be decided whether a linear or a logarithmic 
scale is to be used. The following criterion can be applied: if the median of the data is 
closer to the geometric than to the arithmetic mean, a logarithmic-scale pdf should be 
used. As a null-hypothesis, a (log-)uniform distribution should be assumed and parameter-
ized adequately. Only if this hypothesis has to be rejected, which can be tested, e.g., by 
the Kolmogorov-Smirnov-test [CON 99], a (log-)uniform distribution should be tried.  
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4. Probabilistic methods for uncertainty analysis 
 
This chapter is dedicated to the description of the technical and mathematical methods for 
probabilistic uncertainty and sensitivity analysis. It is assumed that a numerical model is 
available and all input uncertainties to be taken into account can be represented by statis-
tically distributed parameters. It is further assumed that a pdf is given for each of the pa-
rameters under consideration. 
 
Mathematically, it has to be distinguished between random variables (normally denoted by 
capital letters) with their characteristics like expectation or variance and their realisations 
in the form of n-tuples of values (denoted by indexed lower-case letters). Since the expla-
nations in this chapter are meant as an overview for practical application, we only use the 
latter concept here and show some formulas. The letter n is principally used for the sam-
ple size, the letter k for the number of parameters. For an exact mathematical formula-
tion of the underlying theory and further details we refer to the pertinent literature 
[CON 99, YAT 03]. A practical introduction to the subject is given in [ROC 08]. 
 

4.1. Sampling 

Generating a sample of parameter values is the first step in a probabilistic analysis. A sam-
ple of size n is a collection of n sets of values to be used for the calculation runs, taking 
account of the parameter distributions. Different more or less sophisticated sampling 
techniques have been developed, which lead to different kinds of samples with differently 
homogeneous coverage of the parameter space and differently pronounced random ele-
ments. It cannot be generally said which one is the best; this depends on the problem and 
the intended evaluation. Well-established sampling schemes for use in uncertainty and 
sensitivity analysis studies are: 

- simple random sampling, 
- stratified random sampling (e. g. Latin Hypercube sampling, LHS), 
- quasi-Monte-Carlo sampling (low discrepancy sequences), 
- specific sampling (needed for specific sensitivity analysis methods). 

 
These are shortly described in the following. 
 

4.1.1. Simple random sampling 

Simple random sampling means that each individual set of parameter values is selected 
randomly and independently of all others. In practice, true random numbers are hardly 
available, and a software pseudo-random number generator will be used. Such generators 
need a start value, called seed. As long as the same seed is used, the generator will always 
yield the same sequence of pseudo-random numbers and with that the same sample. If 
different samples for the same problem are needed, different seeds have to be used.  
 
The main characteristic of random sampling is that there is neither a system nor a memory 
in the sampling procedure. Each point is drawn without knowledge of the positions of the 
other points. Although, for some purposes like a pure uncertainty analysis this is exactly 
what is needed, it typically leads to clusters and holes in the parameter space. Simple ran-
dom sampling is therefore usually not a very good choice if a homogeneous coverage of the 
parameter space is required.  
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4.1.2. Stratified random sampling, LHS 

For sensitivity analysis, a good sample should cover the total parameter space as well as 
possible, so that all possible parameter combinations are explored according to their prob-
ability of occurrence. A better coverage can be reached by applying a stratified sampling 
scheme. This means that the ranges of the parameter values are sub-divided into separate 
strata from which appropriate numbers of values are randomly drawn. By making sure that 
each stratum is considered in the sampling a more homogeneous coverage is reached.  
 
There are different techniques of strata definition and sampling. A well-known, often ap-
plied and approved technique is Latin Hypercube sampling (LHS). For each parameter the 
interval of possible values is divided into n non-overlapping and adjacent strata of equal 
probability: 

 , 
where f is the pdf and ai and bi=ai+1 denote the lower and upper limits of stratum i. Then 
one value is drawn randomly from each stratum. Finally the drawn values of all parameters 
are combined by randomly permuting the stratum numbers for each parameter. This pro-
cedure provides a sample that is better adequate for sensitivity analysis but still shows a 
random structure. 
 

4.1.3. Quasi-Monte-Carlo sampling 

If the requirement of randomness is abandoned one can essentially improve the homogene-
ity of coverage of the parameter space by using low-discrepancy sequences instead of 
(pseudo-)random sequences. Discrepancy is a measure for the deviation of a sequence 
from the ideal equidistribution. Low-discrepancy or quasi-random sequences are con-
structed specifically to minimize discrepancy. These sequences are calculated using de-
terministic algorithms and leave only little freedom or room for randomness. Sobol se-
quences are a well-established type of low-discrepancy sequences [SOB 67]. A parameter 
sample based on a low-discrepancy sequence is called a quasi-Monte-Carlo sample. Such 
samples can be advantageous for sensitivity analysis, but one should keep in mind that 
they are neither random nor pseudo-random and therefore inadequate for investigations 
that explicitly require randomness. 
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Figure 4-1 Comparison of random (left) and Sobol sequences (right). 256 points were 
drawn (red=1,..,10, blue=11,..,100, green=101,..,256). Points from Sobol sequence 
are more evenly distributed. [Source: Wikipedia] 
 

4.1.4. Specific sampling 

Some sensitivity analysis methods need specific sampling schemes and even an ordered 
sequence of evaluation. This typically leads to a rather inhomogeneous coverage of the 
parameter space. Moreover, such specific samples often have the drawback of non-
reusability, which means that if an evaluation with a different sample size is to be per-
formed, a totally new sample has to be drawn and all model runs with the old sample are 
useless for the new evaluation. Therefore, such sampling should only be performed if there 
is a good reason for applying the method that requires it. 
 

4.2. Parameter dependencies 

The input parameters of the model are not necessarily independent of each other. It has to 
be distinguished between strong and statistical dependencies. Strong dependency means 
that two parameters are coupled via a unique mathematical relation, which can be due to 
specific system properties that are not considered in the model itself. Such dependencies 
can always be resolved by adequate technical measures, so that the dependent parameters 
appear as a single one.  
 
Statistical dependencies, however, require adequate handling in the probabilistic analysis. 
Such dependencies occur if two parameters are influenced by the same uncertain effect, 
but are additionally subject to their own uncertainties, so that they show a common ten-
dency. A low porosity of a geological layer, for example, normally means that also the 
permeability is low, but since there is no universally valid porosity-permeability-relation, 
this is not a strong dependency. Such dependencies are often due to our inability to de-
scribe the natural interactions in detail. 
 
Although theoretically, statistical dependencies can follow any mathematical relation, 
they are normally expressed in practice by linear correlation. For two statistically distrib-
uted parameters X and Y with the realisations (x1,…,xn) and (y1,…,yn) the empirical correla-
tion coefficient is defined as 
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 , 
 

where the bar denotes the mean:  . The correlation coefficient is always between 
-1 and 1. Positive values mean that higher x–values mostly appear together with higher y-
values, negative or inverse correlation means that higher x-values are correlated with low-
er y-values. An absolute value of 1 means that there is a strong linear or inversely linear 
relationship between x and y. If the correlation coefficient is 0 the variables are called 
uncorrelated, which does, however, not mean that they are necessarily statistically inde-
pendent of each other. Even if the parameters are theoretically uncorrelated, there is al-
ways a random correlation, so that a correlation coefficient of exact zero will hardly ever 
be found. 
 
The usual problem is not to calculate the correlation coefficient of two given parameter 
tuples, but the opposite one: we know or assume that two parameters are statistically cor-
related in reality and have to take account of that in the sampling procedure. As long as 
the sequence order is irrelevant for the evaluation, this can be achieved by drawing the 
parameter values independently according to their respective pdfs and then re-sorting and 
combining them appropriately. Adequate algorithms are available for introducing a given 
correlation matrix into a parameter sample.  
 
In practice, it will hardly ever be possible to give a substantiated justification for a specif-
ic value of the correlation coefficient of two parameters we consider statistically coupled. 
It does not make much sense normally, to quantify such a dependency with a correlation 
coefficient below 0.5, since such a correlation will hardly be visible and have only a minor 
influence to the results of the probabilistic analysis. 
 

4.3. Uncertainty analysis 

Uncertainty analysis is the investigation of the overall uncertainty of the model output 
under the influences of all input uncertainties. Once all parameter uncertainties have been 
quantified properly by appropriate pdfs, possible correlations have been defined and an 
appropriate sample has been drawn, probabilistic uncertainty analysis is a straightforward 
task. After all n model runs have been performed, a set of n output values is available, 
which allows all kinds of statistical evaluation. If the model calculates a time-dependent 
output, one can either select a specific point in time or take the absolute maximum of 
each run.  
 
Principally, for uncertainty analysis only the output of the model is relevant, since it al-
ready reflects the effects of all input uncertainties, regardless of the number of uncertain 
parameters and how they interact. For an uncertainty analysis there is no need to adapt 
the sample size and the number of runs to the number of parameters.  
 

4.3.1. Statistical measures 

Numerical information about the uncertainty of the model output can be obtained by cal-
culating statistical measures like  

- mean, 
- standard deviation, 
- maximum and minimum, 
- median, 



 

OPERA-PU-GRS7321  Page 23 of 35 

- quantiles (e. g. 5 % and 95 %). 
 
All of these are well-known measures that can be calculated using standard software tools 
and do not need more explanation. Such values are helpful for quantifying the overall un-
certainty, but do not give deeper insight to the model behaviour. 
 

4.3.2. Graphical uncertainty analysis 

A graphical representation is often more meaningful than some calculated numeric values. 
Scatterplots allow a two-dimensional visualisation of the model output values versus some 
other characteristic. DGR performance assessment models normally yield a time-
dependent output for each run. If one intends to evaluate the maxima of all runs, the time 
component gets lost by simply calculating statistical measures. In a scatterplot, however, 
it can be made visible by using the second axis. A very descriptive presentation results 
from plotting the maximum value versus the time of its occurrence. Additional information, 
for example the radionuclide responsible for the maximum, can be colour-coded in such a 
plot. An example is shown in Figure 4-2. 
 
Another type of plot that often gives interesting information about the model output is 
that of the relative frequency of output values. It can be plotted either as a column dia-
gram, the height of each column representing the frequency of values that lie in a specific 
interval, or as a curve of cumulated frequency, which is normally presented in its inverse 
form. These curves indicate which percentage of the output values lie above the value on 
the x-axis. Examples for both types of presentations are shown in Figure 4-3. 
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Figure 4-2 Scatterplot of maxima vs. time of occurrence with colour-coding of radi-
onuclides 
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Figure 4-3 Relative frequency plots as cumulated curves for several points in time 
(left) and as a column plot for the maximum (right) 
 

4.3.3. Compliance with criteria 

For the detrimental effects of a DGR there are in most countries formal criteria requiring 
that some specific limit must not be exceeded. This can, of course, only be proved by ap-
plying the model, taking into account all relevant uncertainties. A strong criterion could 
therefore cause two kinds of problems: 

- Since the distribution of model output values can theoretically extend to infinity, 
with a finite number of model runs one can never be sure to have actually calculat-
ed the highest possible output. A proof of compliance with a strong criterion would 
therefore be theoretically impossible. 

- The requirement that even in very improbable cases the criterion must be met 
could lead to the necessity of unreasonably expensive measures to avoid situations 
that most likely would never occur anyway.  

 
Therefore, criteria are normally given in a statistical form that allows a low probability of 
exceeding the limit value. But even the requirement that, for example, 95 % of all possible 
model output values have to remain below the limit would still require an infinite number 
of model runs. For this reason, such criteria are formulated with two probability values, p 
and q: 
 
The probability that the model yields an output value not exceeding the limit value must 
be at least p with a confidence of at least q. That means that there is a probability of q or 
higher that the model will yield values below the limit in at least a fraction of p of all pos-
sible cases. 
 
For a number n of independent model runs, the confidence can be calculated as  
 

 , 
 
where k is the number of limit exceedances (k = 0 is required if no exceedance is allowed) 
and F denotes the cumulative binomial distribution 
 

 . 
 
Such a p/q-criterion can easily be checked by evaluating a relatively low number of model 
runs, as long as the following points are made sure: 
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- The parameter sets for the model runs to evaluate have to be purely random (or 
pseudo-random) and independent of each other. Model runs based on a non-random 
sample must not be used.  

- The model runs for evaluation have to be finally selected prior to knowing their re-
sults. It is inadmissible to replace a limit-exceeding run by another one afterwards. 

- The results of all evaluated model runs remain below the limit value.  
 
If actually an exceedance of the limit is found, it is not sufficient to run the model once 
more in order to reach the required number of non-exceeding runs. In such a case a con-
siderably higher number of runs become necessary.  
 
The minimum numbers of model runs that guarantee compliance with the criterion can be 
calculated using the formula given above. For no exceedances and for one exceedance 
they are listed in Table 4-1 for different values of p and q.  
 
Table 4-1 Minimum numbers of model runs to fulfil the p/q criterion with no ex-
ceedances (black) or one exceedance (red) 

 q = 90 % q = 95 % q = 99 % 

p = 90 % 22 (38) 29 (46) 44 (64) 

p = 95 % 45 (77) 59 (93) 90 (130) 

p = 99 % 230 (388) 299 (473) 459 (662) 

 

4.4. Sensitivity analysis 

Sensitivity analysis means the investigation of the influences of parameter uncertainties to 
the uncertainty of the model output. This is necessary to identify those parameters that 
have the highest influence on the variability of the model output and should therefore be 
given the most attention. While parameters to which the model is nearly insensitive need 
only a rough quantification within their range of uncertainty, those that turn out to cause 
highly sensitive model reactions are obviously important for the system behaviour should 
be handled with specific care. If the overall uncertainty of the model output seems too 
high to fulfil a formal criterion, it should be tried to reduce the uncertainty ranges of the 
most sensitive parameters.  
 
Sensitivity studies can be performed by varying a specific parameter within its uncertainty 
interval and leaving all other parameters fixed to their standard value. This is called local 
sensitivity analysis and is normally done on a deterministic basis with only a few model 
runs in order to better understand the model behaviour. In contrast, assessing the sensitiv-
ities under the influences of the uncertainties of all parameters together is called global 
sensitivity analysis, which can normally only be effectively performed as a probabilistic 
investigation. The methods described in this chapter address this kind of sensitivity analy-
sis. 
 

4.4.1. Regression- and correlation-based methods 

A group of methods for probabilistic sensitivity analysis is based on linear regression or 
correlation. These two kinds of methods are mathematically related and yield similar re-
sults.  
 
The idea of the regression method is to approximate the actual model by a multi-linear 
one and to interpret the coefficients of the individual parameters as sensitivity measures. 
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If the input parameter values of the i-th run are denoted by x1i, …, xki  and the model out-
put by yi, the linear estimator has the form 
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with error terms εi, which have to be minimised using least squares method. Then the co-
efficients bj are a measure for the sensitivity of the model output against variations of the 
parameters xj. To allow a unified assessment of these values, the parameters are trans-
formed such that they get the expectation 0 and the standard deviation 1. Then the coef-
ficients are called standardised regression coefficients (SRC). They are always in the range 
between -1 and 1. The coefficient of model determination, R², is defined as the correlation 
coefficient of the estimated values (without the error correction term) and the real values. 
If it is close to 0, the estimation is rather bad, whereas a value near 1 indicates a close-to 
linear behaviour of the model and for this reason a good performance of linear sensitivity 
analysis methods. 
 
A similar sensitivity measure can be obtained by calculating the linear correlation coeffi-
cients between the model output Y and any input parameter Xj. These coefficients are 
named after Pearson (PEAR). 
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For both SRC and PEAR a positive coefficient means that the result increases if the param-
eter does so; a negative value indicates an inverse correlation. A coefficient of 1 or -1 
means a strong linear direct or inverse relationship between input and output. If the coef-
ficient is 0 the parameters are uncorrelated, which means that the output is insensitive to 
the parameter.  
 
If the input parameters are correlated among themselves, accidentally or on purpose, their 
influences to the model output are coupled. The methods described so far are unable to 
resolve this coupling and describe the total influence of the input parameters including 
that resulting from couplings with other parameters. To separate these influences, two 
regression ansatzes can be made for the parameter under investigation and for the model 
output: 
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The partial correlation coefficient (PCC) is the correlation coefficient between the errors 
εi and δi. It is a measure for the model sensitivity to the parameter reduced by external 
influences. It can be shown that in case of uncorrelated parameters these values are iden-
tical to the SRCs.  
 

4.4.2. Rank transformation 

The correlation- and regression-based methods work best on models with a nearly linear 
behaviour. DGR models, however, are typically non-linear and can show a rather complex 
behaviour, which can lead to low R²-values and a low performance of the linear methods. 
This problem can be mitigated by performing a rank transformation on the model input and 
output. The rank rk(xji) of a parameter value xji is its number in an ordered list of all n val-
ues xj1, … , xjn. The highest value is assigned the rank 1, the lowest value the rank n. If 



 

OPERA-PU-GRS7321  Page 27 of 35 

several values happen to be equal, they are assigned the same rank number, which is cal-
culated as the mean of the ranks they share. By replacing each value by its rank, a mono-
tonic relation is transformed into a linear one.  
 
Rank transformation often (but not always!) leads to an increased R² and a better perfor-
mance of linear sensitivity analysis methods. It has to be kept in mind, however, that there 
is a considerable loss of information in this kind of transformation. Therefore, the results 
of a rank-based sensitivity analysis may be more reliable, but are generally less meaningful 
than those of a value-based analysis. 
 
If the SRCs are calculated on the ranks, they are called standardised rank regression coef-
ficients (SRRC). The rank-based correlation coefficients are named after Spearman (SPEA). 
It can be shown that – as long as all ranks are different – they can be calculated as 
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The PCC concept applied on rank basis yields the partial rank correlation coefficients 
(PRCC), which, of course, are mathematically equal to the SRRCs in case of uncorrelated 
parameters. 
 

4.4.3. Non-parametric tests 

A number of statistical tests have been developed for investigating the sensitivity of a 
model to variation of a parameter. In contrast to the linear regression- or correlation-
based methods described so far, such tests do not assume a close-to-linear relationship or 
some other specific kind of model behaviour and are therefore called non-parametric. A 
typical and often applied non-parametric test is the Kolmogorov-Smirnov test or Smirnov 
test [CON 99]. This test checks whether there is a significant influence of an input parame-
ter on the model output.  
 
For the Smirnov test, the total of all parameter sets of the sample is separated into two 
subsamples according to the 90%-quantile of the output. That means that the 10 percent of 
input parameter sets that lead to the highest output values are separated from the others. 
The distributions of the parameter under investigation in both subsets are compared with 
each other. If there is no significant difference, the model can be assumed to be rather 
insensitive to the parameter. The test is performed by calculating the maximum absolute 
difference between the empirical distributions of the parameter in both subsamples. The 
hypothesis of equal distributions is rejected with significance α if this difference exceeds 
the 1-α quantile c(α) of the Kolmogorov distribution as listed below [Source: Wikipedia]. 
 
 
 
 
It was observed that the Smirnov test can yield parameter rankings that differ essentially 
from those derived from correlation or regression coefficients. 
 

4.4.4. Variance-based sensitivity indices 

If the model under consideration is neither linear nor monotonic, which is often the case 
when dealing with complex repository structures, the linear methods perform rather poorly, 
and the rank-based sensitivity measures have only a limited quantitative meaning. 
 

 0.10 0.05 0.025 0.01 0.005 0.001 

 1.22 1.36 1.48 1.63 1.73 1.95 
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Variance-based methods [SAL 00] follow a different approach and do not require linearity 
of the model. The variance of a statistically distributed parameter is the mean squared 
deviation from its mean value. To assess the influence of a parameter Xj to the model out-
put Y the expectance of Y is calculated under the condition that Xj remains constant. The 
variance of this value under variation of Xj is then calculated and divided by the total vari-
ance of Y: 
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This value is a quantitative measure for the sensitivity of the output to the parameter Xj. It 
is called the first-order sensitivity index. There are different methods to calculate these 
indices. A universal, but computationally expensive method is directly based on Sobol’s 
theory of decomposition of the total variance into terms of increasing dimensionality, 
which yields not only the first-order indices but also all higher orders, describing the influ-
ence of a parameter to the output in coactions with other parameters. Of specific interest 
are the total-order indices, which take account of all possible parameter interactions. 
 
Other methods for calculating the sensitivity indices have been developed. One of them is 
the Fourier Amplitude Sensitivity Test (FAST) [SAL 97, SAL 00]. The idea is to scan the pa-
rameter space by means of periodical functions with interference-free frequencies and to 
recover these frequencies in the model output by performing a Fourier analysis. Whereas 
the classical FAST yields only the first-order indices, the extended FAST (EFAST) method 
also calculates the total-order indices within the same evaluation. This is achieved by vary-
ing groups of parameters with the same frequency or harmonics for some periods so that 
they show up together in the Fourier analysis. In recent years, more computationally effi-
cient methods for calculating variance-based sensitivity indices of first order have been 
developed, like the EASI method [PLI 10]. 
 
In comparison with the linear methods the variance-based methods have some specific 
advantages. In particular, they allow quantitative assessment and comparison of the pa-
rameter sensitivities, even with highly non-linear and non-monotonic models. A drawback, 
however, is the high number of model runs that is often necessary to get reliable results. 
Moreover, there seem to be some limitations of these methods in practical application. A 
big disadvantage of FAST/EFAST is that very specific and non-reusable samples are needed. 
Moreover, these methods perform rather poorly if applied to problems that depend on dis-
crete or quasi-discrete parameters. A second drawback of the variance-based methods in 
general is that, though they do not require linearity of the model, the variance is calculat-
ed on a linear scale, and if the output varies over several orders of magnitude, high values 
are essentially overvalued, which can result in a low robustness of the calculated results.  
 

4.4.5. Graphical sensitivity analysis 

Graphical methods of sensitivity analysis provide a qualitative overview of parameter sen-
sitivities on first sight and are often very helpful. For such an analysis a number of calcula-
tion runs have to be performed on the basis of a parameter sample. Any kind of sampling is 
possible, although very inhomogeneous samples can produce blurred or misleading results. 
 
Several methods of graphical sensitivity analysis have been proposed, three of which are 
described here: 

- contribution to sample mean (CSM) plots, 
- conditional cobweb plots, 
- mean rank plots. 
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For the CSM plot the model runs are sorted according to the values of the parameter under 
investigation in increasing order. Then for each fraction of all model runs the cumulated 
relative contribution to the mean of all output values is plotted. These curves always start 
at (0,0) and end at the point (1,1). While a curve close to the diagonal indicates a low in-
fluence of the parameter to the model output, a noticeable bent curve indicates a high 
sensitivity. If the curve lies below the diagonal, the model output is mainly determined by 
high parameter values, a curve above the diagonal indicates the opposite. If the CSM 
curves for several parameters are plotted in one figure, the sensitivities can be easily 
compared. An example is shown in Figure 4-4.  
 
For a conditional cobweb plot a specific subset of the model runs is selected, for example 
the 10 percent with the highest model output. The model parameters and the output value 
are each represented by a vertical line in a diagram, representing the respective range of 
values or their ranks. For each run of the subset, the relevant parameter values are con-
nected by a line. This leads to a mess of lines, which appears thinned or condensed at the 
most sensitive parameters. Cobweb plots, however, become useless if the number of eval-
uated runs – and with that the number of intersecting lines – becomes too large. 
 
In order to get a clearer figure compared with the messy cobweb plots, Cormenzana and 
Bolado proposed a kind of presentation called mean rank plots [PAM 09b]. For a defined 
subset of the runs the mean ranks of the parameter values and the model output value are 
connected by a single line. In this manner, the lines for several different subsets, say the 
upper and the lower 10 %, can be plotted in one figure, which is very illustrative. Parame-
ters of low sensitivity are met by the line near the middle, which is, in terms of ranks, one 
half of the number of runs. An example with 20 lines is shown in Figure 4-5. 
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Figure 4-4 CSM plot of a DGR model. 13 parameters have been considered, five of 
which seem more important (plotted in colour). 
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Figure 4-5 Mean rank plot of a DGR model. The 2000 model runs have been divided 
into 20 subsets according to the model output value. For each subset one line is pre-
sented. The model is most sensitive to the parameters with the highest spans. 
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5. Discussion 
 
Strategies 
This document discusses various techniques for uncertainty analysis. However, it is not 
obvious how to choose between these techniques. For making a choice, a strategy must be 
used. [NEA 13] describes a number of strategies to handle uncertainties. The following 
strategies are common in safety assessment: 
1. Addressing the uncertainty explicitly. 
2. Demonstrating that the uncertainty is irrelevant to the safety assessment. 
3. Bounding the uncertainty 
4. Ruling out the event or process being uncertain 
5. Using an agreed stylised approach. 
 
Although this list of strategies is useful, in practice the strategy is more complex. 
 
In the safety assessment process used in OPERA, a scenario analysis is a key step as a prep-
aration for the quantitative analyses. In OPERA, scenario analysis is treated in Task 7.1. 
From the viewpoint of strategy, it is recognised that it is uncertain how the disposal sys-
tem will evolve. This uncertainty is addressed explicitly (strategy 1) by developing a set of 
scenarios that each may be a description of the system evolution. 
 
To keep the number of scenarios manageable, strategies 2 and 4 are applied in the process 
of identifying scenarios: irrelevant events and processes are screened out, event and pro-
cesses that are extremely unlikely are ruled out. 
 
Last but not least, inside each scenario on or more assessment cases are formulated in 
such way that they are bounding cases for scenario uncertainties (strategy 3).  
 
Once the set of scenarios is defined and calculation models have been developed, the 
same sequence is repeated. Uncertainties in the results of the calculations are addressed 
explicitly, but only the uncertainties of a limited number of models and parameters can be 
treated explicitly by a probabilistic uncertainty and sensitivity analysis. Models and param-
eters are screened out by demonstrating that uncertainty is irrelevant. And if possible 
without losing relevant information about the uncertainties, bounding values are used. 
 
Therefore, in practise, the strategy is to address uncertainties explicitly, to the extent 
that is useful and practical.  
 
Other types of uncertainties 
For some at present uncertain parameters it makes no sense to use a probabilistic ap-
proach. This is the case, for example, for the waste inventory. At present there is a rela-
tively well known uncertainty about the waste inventory that will accumulate in the Neth-
erlands for final disposal as of 2130. If this uncertainty were included in the probabilistic 
analysis, the results of this probabilistic analysis would lose their relevance in 2130 when 
the waste inventory is definitely known. In such cases it is better to establish some 'waste 
scenarios', for which separate analyses are performed. The same goes for all "technical 
parameters" relating to the facility design, the host rock and the geosphere. 
 
How to identify the  parameters that are of interest for the probabilistic process 
The identification of the parameters that should be considered in a probabilistic investiga-
tion is not trivial and requires some expertise. Since a high number of probabilistically var-
ied parameters require a lot of work for pdf quantification and a high numerical effort to 
perform sensitivity analysis, the number should be kept as low as possible. Parameters that 
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allow a clearly conservative, but not over-conservative quantification can be left out of 
the probabilistic investigation, as long as there are no specific reasons to include them. 
Often, however, it is not fully clear whether a parameter will under all circumstances in-
fluence the model results in the same direction, so that a conservative value can be se-
lected. In such cases it has to be assessed in an adequate manner whether it makes sense 
to include the parameter in the probabilistic analysis. A graphical screening can be very 
helpful in this task and is probably the better choice compared with other screening meth-
ods like Morris screening [SAL 00]. For orientation a limited number of runs can be per-
formed, nevertheless taking into account all questionable parameters. If no proper pdfs 
are known, uniform or log-uniform distributions between reasonable limits should be used. 
A CSM or mean rank plot will then normally show, which parameters are probably im-
portant and which do not have significant effects to the model output. The proper sensitiv-
ity analysis should then be restricted to those parameters that appear most important, if 
possible no more than about 10. 
 
What can be obtained with an uncertainty and sensitivity analysis 
A well understood result of a sensitivity analysis is firstly a good basis for deepening the 
understanding of the system behaviour. A robust list of parameter sensitivities can improve 
the confidence in the model results. Secondly, it is important to know about the parame-
ters that have a high influence to the model output. Further research can then be concen-
trated on reducing the most important uncertainties. 
The latter statement is not straightforward to execute. For example, the OPLA-1A studies 
show that the transport trough the aquifer system is the dominant source of uncertainty in 
the far future dose rates. However, this formulation does not reflect that there is very 
little uncertainty about the processes in the waste, EBS and host rock (salt dome), which is 
more important. Moreover, the scenario considered is an altered evolution scenario: (un-
likely) brine intrusion in the system. The most important uncertainty therefore, is related 
to the occurrence of brine intrusion. 
 
It is expected now, that through the inclusion of the performance indicator, more nuance 
is obtained in the results of the uncertainty and sensitivity analysis. 
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6. Conclusion 
 
The following concepts for dealing with uncertainties have been discussed: 
- Scenario analysis 
- Conservative approach 
- Deterministic investigation 
- Probabilistic analysis 
 
For the uncertainty analysis process, the following steps are foreseen: 
1. establish a set of scenarios (Task 7.1) 
2. establish for each scenario a number of assessment cases (i.e. various inventories, 

focus on specific waste types) 
3. establish models and (conservative) parameter values for the assessment cases. 
4. for each assessment case, identify the parameters that are of interest for the prob-

abilistic process 
5. establish pdf's for these parameters 
6. perform the analyses 
7. evaluate using one or more of the techniques described (e.g. regression- and corre-

lation-based methods, or rank transformation, etc.) 
 
A careful evaluation of the results of the uncertainty and sensitivity analysis is required to 
show the robustness of the conclusions that can be drawn from the safety assessment. 
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